Michael E. Rose, Ph.D.

Senior Research Fellow

Innovation and Entrepreneurship Research

+49 89 24246-566
michael.rose(at)ip.mpg.de

Personal Website:

http://michael-e-ro.se

Areas of Interest:

Economics of Science, Innovation, Academic Labor Market, Social Network Analysis, Machine Learning

Academic Résumé

Since 06/2018
Post-Doctoral Researcher at the Max Planck Institute for Innovation and Competition (Innovation and Entrepreneurship Research)

03/2018 – 05/2018
Guest Researcher at Deutsche Bundesbank, Research Centre

08/2017 – 02/2018
Visiting Researcher an Georgia Institute of Technology, Scheller College of Business

04/2015 – 08/2018
Doctor of Philosophy (Ph.D.) at University of Cape Town;Doctoral Thesis: “Collaboration Networks in Economic Science”

10/2014 – 05/2015
Advanced Studies Program in International Economic Policy Research at Kiel Institute for the World Economy

10/2012 – 09/2014
Master of Science (M.Sc.) in Quantitative Economics, Kiel University; Erasmus Exchange Semester at Stockholm University

10/2009 – 09/2012
Bachelor of Science (B.Sc.) in Economics and Business Administration at University of Jena; Exchange semester at Stellenbosch University

Scholarships

2017 - 2018
University of Cape Town Murray-Jelks Scholarship for International Travel

2015 - 2018
AIFMRM PhD Dissertation Scholarship

Publications

Articles in Refereed Journals

Rose, Michael; Shekhar, Suraj (2023). Adviser Connectedness and Placement Outcomes in the Economics Job Market, Labour Economics 84.

  • We study the role of social networks in the academic job market for graduate students of Economics. We find that the connectedness of a student’s advisor in the coauthor network significantly improves her job market outcome. We use two identification strategies and find that a) higher Eigenvector centrality of an adviser leads to her student getting placed at a better ranked institution, and b) larger distance between an adviser and an institution decreases the probability that her students are placed there. Our study sheds light on the importance of social connections in a labour market where information frictions regarding job openings are virtually absent.
  • https://doi.org/10.1016/j.labeco.2023.102397
  • Also published as: Max Planck Institute for Innovation & Competition Research Paper No. 18-12

Mosienko, Valentina; Pelepets, Marina; Reinsone, Sanita; Rose, Michael (2022). Funding Databases for Ukrainian Academics, Science, 377 (6605), 480. DOI

    Rose, Michael (2022). Small World: Narrow, Wide, and Long Replication of Goyal, Van Der Leij and Moraga-Gonzélez (Jpe 2006) and a Comparison of Econlit and Scopus, Journal of Applied Econometrics, 37 (4), 820-828. DOI

    • I undertake a narrow, wide, and long replication of Goyal, van der Leij and Moraga-Gonzélez (2006, https://doi.org/10.1086/500990). Using social network analysis, they show that the Economics profession gradually evolved into a small world. Small worlds (or small world networks) have unique information transmission capabilities. The trend is explained by the emergence of frequently publishing researchers with many distinct co-authors. In a social network, they resemble stars. The original results are robust to the usage of (I) another software, (II) a recent version of the originally used data, and (III) another database and a more sophisticated author disambiguation.
    • Also published as: Max Planck Institute for Innovation & Competition Research Paper No. 21-01

    Rose, Michael; Opolot, Daniel C.; George, Co-Pierre (2022). Discussants, Research Policy, 51 (10). DOI

    • We study the role of informal collaboration in academic knowledge production using published research papers previously presented and discussed at the NBER Summer Institute. We show that papers that have a discussant are published in highly-ranked journals and are more likely to be published in a top journal. Conditional on having a discussant, the quality of a paper’s journal outlet increases in the discussant’s prolificness and editorial experience. This supports the idea that discussants help reduce information asymmetries that are inherent in the academic publication process. Conversely, using social network analysis we find no evidence that citations accumulate because discussants diffuse information about the paper.
    • Also published as: Max Planck Institute for Innovation & Competition Research Paper No. 20-19

    Maryl, Maciej; Ivashchenko, Oleksandra V.; Reinfelds, Matiss; Reinsone, Sanita; Rose, Michael (2022). Addressing the Needs of Ukrainian Scholars at Risk, Nature Human Behaviour, 6, 746-747. DOI

      Hottenrott, Hanna; Rose, Michael; Lawson, Cornelia (2021). The Rise of Multiple Institutional Affiliations in Academia, Journal of the Association for Information Science and Technology, 72 (8), 1039-1058. DOI

      • This study provides the first systematic, international, large-scale evidence on the extent and nature of multiple institutional affiliations on journal publications. Studying more than 15 million authors and 22 million articles from 40 countries we document that: In 2019, almost one in three articles was (co-)authored by authors with multiple affiliations and the share of authors with multiple affiliations increased from around 10% to 16% since 1996. The growth of multiple affiliations is prevalent in all fields and it is stronger in high impact journals. About 60% of multiple affiliations are between institutions from within the academic sector. International co-affiliations, which account for about a quarter of multiple affiliations, most often involve institutions from the United States, China, Germany and the United Kingdom, suggesting a core-periphery network. Network analysis also reveals a number communities of countries that are more likely to share affiliations. We discuss potential causes and show that the timing of the rise in multiple affiliations can be linked to the introduction of more competitive funding structures such as "excellence initiatives" in a number of countries. We discuss implications for science and science policy.
      • Also published as: Max Planck Institute for Innovation & Competition Research Paper No. 20-14
      • Also published as arXiv Preprint

      Rose, Michael; George, Co-Pierre (2021). What 5,000 Acknowledgements Tell Us About Informal Collaboration in Financial Economics, Research Policy, 50 (6). DOI

      • We present and discuss a novel dataset on informal collaboration in financial economics, manually collected from more than 5,000 acknowledgement sections of published papers. We find that informal collaboration is the norm in financial economics, while generational differences in informal collaboration exist and reciprocity among collaborators prevails. Female researchers appear less often in acknowledgements than comparable male researchers. Information derived from networks of informal collaboration allows us to predict academic impact of both researchers and papers even better than information from co-author networks. Finally, we study the characteristics of the networks using various measures from network theory and characterize what determines a researcher’s position in it. The data presented here may help other researchers to shed light on an under-explored topic.
      • Also published as: Max Planck Institute for Innovation & Competition Discussion Paper No. 11

      Rose, Michael; Kitchin, John R. (2019). pybliometrics: Scriptable Bibliometrics Using a Python Interface to Scopus, SoftwareX, 10. DOI

      • We present a wrapper for the Scopus RESTful API written for Python 3. The wrapper allows users to access the Scopus database via user-friendly interfaces and can be used without prior knowledge of RESTful APIs. The package provides classes to interact with different Scopus APIs to retrieve information as diverse as citation counts, author information or document abstracts. Files are cached to speed up subsequent analysis. The package addresses all users of Scopus data, such as researchers working in Science of Science or evaluators. It facilitates reproducibility of research projects and enhances data integrity for researchers using Scopus data.
      • Also published as: Max Planck Institute for Innovation & Competition Research Paper No. 19-03

      Contributions to Collected Editions

      Bechthold, Laura; Chugunova, Marina; Friess, Svenja; Hoisl, Karin; Rose, Michael (2021). Women in Creative Labor: Inventors, Entrepreneurs and Academics, in: Ulla Weber (ed.), Fundamental Questions. Gender Dimensions in Max Planck Research Projects (Schriften zur Gleichstellung, 51), 135-154. Baden-Baden: Nomos. DOI

        Further Publications, Press Articles, Interviews

        Ganguli, Ina; Rose, Michael; Ivashchenko, Oleksandra; Baruffaldi, Stefano Horst (2023). Ukrainian Science is Struggling, Threatening Long-Term Economic Recovery – History Shows Ways to Support the Ukrainian Scientific System, The Conversation 2023.

        Discussion Papers

        Ghosh, Mainak; Erhardt, Sebastian; Rose, Michael; Buunk, Erik; Harhoff, Dietmar (2024). PaECTER: Patent-level Representation Learning using Citation-informed Transformers, arXiv preprint 2402.19411. DOI

        • PaECTER is a publicly available, open-source document-level encoder specific for patents. We fine-tune BERT for Patents with examiner-added citation information to generate numerical representations for patent documents. PaECTER performs better in similarity tasks than current state-of-the-art models used in the patent domain. More specifically, our model outperforms the next-best patent specific pre-trained language model (BERT for Patents) on our patent citation prediction test dataset on two different rank evaluation metrics. PaECTER predicts at least one most similar patent at a rank of 1.32 on average when compared against 25 irrelevant patents. Numerical representations generated by PaECTER from patent text can be used for downstream tasks such as classification, tracing knowledge flows, or semantic similarity search. Semantic similarity search is especially relevant in the context of prior art search for both inventors and patent examiners. PaECTER is available on Hugging Face.

        Rose, Michael; Jurikova, Katarina; Pelepets, Marina; Slivko, Olga; Yereshko, Julia (2024). Scientific Support Offers for Ukrainians: Determinants, Reasons and Consequences, Max Planck Institute for Innovation & Competition Research Paper, No. 24-01.

        • In response to Russia’s full-scale invasion of Ukraine in February 2022, the global scientific community spontaneously initiated a range of support offers for displaced Ukrainian scientists. This study aims to assess the adequacy of these support mechanisms in meeting the specific needs of Ukrainian scientists. Utilizing a comprehensive survey of registered potential hosts for Ukrainian scientists, our research quantifies the demand for various support types, such as financial assistance, scholarships, and resource access, and explores the motivations behind these offers.

          Our key findings reveal a higher demand for scholarships compared to other support types, and a high demand for offers related to the social sciences and humanities. Interestingly, no clear preference for support based on the host country emerged, indicating that immediate support and safety were prioritized over long-term career prospects. We speculate about the reasons behind the demand factors, such as preference for flexibility over long-term commitment, a higher share of social scientists and humanists among scientists able to leave, a higher share of English speakers among social scientists and humanists, and adverse funding shocks.

          The implications of our research are significant for policymakers and academic institutions in designing effective support programs for scientists in crisis situations. The findings highlight the importance of flexible financial aid and a nuanced understanding of the varied needs within the scientific community. This study contributes to the academic discourse on the dynamics of academic support in geopolitical crises and underscores the necessity for a comprehensive, empathetic approach to aiding displaced scientists.
        • Available at SSRN

        Rose, Michael; Shekhar, Suraj (2023). Adviser Connectedness and Placement Outcomes in the Economics Job Market, Max Planck Institute for Innovation & Competition Research Paper, No. 18-12.

        • Using two identification strategies, we show that the connectedness of a PhD adviser (in the coauthor network) positively affects the placement of her student. First, we demonstrate that, on average, more central advisers place their students at better ranked institutes. To do this, we use the changes in the centrality of the adviser's coauthors in the year of student placement as an exogenous shock to the adviser's centrality. Our second strategy uses the death of faculty members as an exogenous shock to show that the probability of a student being placed at a particular university reduces when the 'social distance' between her adviser and that university increases due to the death.
        • Available at SSRN
        • Also published in: Labour Economics Volume 84, October 2023, 102397

        Erhardt, Sebastian; Ghosh, Mainak; Buunk, Erik; Rose, Michael; Harhoff, Dietmar (2022). Logic Mill - A Knowledge Navigation System, arXiv preprint 2301.00200.

        • Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
        • https://doi.org/10.48550/arXiv.2301.00200

        Widmann, Rainer; Rose, Michael; Chugunova, Marina (2022). Allegations of Sexual Misconduct, Accused Scientists, and Their Research, Max Planck Institute for Innovation & Competition Research Paper, No. 22-18. DOI

        • We study academic consequences of non-academic misconduct for accused researchers at US universities. Focusing on allegations of sexual misconduct, we find detrimental effects on scientific impact, productivity and career. Other researchers are less likely to cite the perpetrator’s prior work after allegations surface. The effect is absent in male-dominated fields and weakens with distance in the co-authorship network, indicating that researchers learn about allegations via their peers. Although we find that alleged perpetrators tend to remain active researchers, they are less likely to be affiliated with a university and publish fewer articles following the incident.

        Rose, Michael; Reinsone, Sanita; Andriushchenko, Maksym; Bartosiak, Marcin; Bobak, Anna; Drury, Luke; Düring, Marten; Figueira, Inês; Gailīte, Elīna; Guimarães Abreu, Lucas; Gutierrez, Irene; Ivashchenko, Oleksandra; Heuckelom, Kris Van; Jaudzema, Justine; Jurikova, Katarina; Knörzer, Johannes; Kutafina, Ekaterina; Kwaśnicki, Mateusz; Lane, Hakan; Ļaksa-Timinska, Ilze; Laschowski, Brokoslaw; Lattu, Annina; Maci, Megi; Mäkinen-Rostedt, Katri; Maryl, Maciej; Meerbeek, Marten van; Morin, Olivier; Mosienko, Valentina; Palou Vilar, Vilar; Pauw, Karen De; Pelepets, Marina; Reinfelds, Matiss; Rujan, Cristina; Santybayeva, Zhanna; Skatova, Anya; Vita, Martin; Weaver, Ieva; Wnuk, Magdalena (2022). #ScienceForUkraine: an Initiative to Support the Ukrainian Academic Community. “3 Months since Russia’s Invasion in Ukraine”, February 26 – May 31, Max Planck Institute for Innovation & Competition Research Paper, No. 22-13.

        • here was an immediate ad-hoc response of the international scientific community to help scholars from universities affected by Russia's war in Ukraine. Official government-backed funding programmes later allowed the ad-hoc help offers to be sustainable and stable. The #ScienceForUkraine initiative is a grass-root initiative that emerged out of the desire to help; initially created as a central database for the worldwide offers for help. Its 133 active volunteers engaged with policy-makers and funding bodies to improve support to the Ukrainian academic community.

          The website scienceforukraine.eu became a central and well-known hub with a general database for help listings but also extensive curated link lists for further help. There were more than 120k visits in the past three months, 12k of which are reportedly from Ukraine. #ScienceForUkraine has many active country groups that flexibly respond to needs in their geographic area. Collecting information, creating posters for border stations, mentoring, consulting on how to organise transfers, and engaging with policy makers are some of the tasks performed by members.

          #ScienceForUkraine is active on all major social networks to be in touch with both the Western academic community (primarily Twitter and LinkedIn) and the Ukrainian academic community (mainly Facebook and Telegram); whereas students are reached mostly via Instagram. The initiative fulfils an important function by transmitting information from one sphere to the other. #ScienceForUkraine recorded well over 2,600 support listings (one listing may be directed at several scholars). 15% of these were offered by German institutions (410), followed by French (227) and Polish (183) institutions.
        • Available at SSRN

        Rose, Michael (2020). Small World: Narrow, Wide and Long replication of Goyal, van der Leij and Moraga-González (JPE 2006) and a Comparison of EconLit and Scopus, Max Planck Institute for Innovation & Competition Research Paper, No. 21-01. DOI

        • I undertake a narrow, wide and long replication of Goyal, van der Leij and Moraga-González (Journal of Political Economy 2006; 114(2): 403–412). Using social network analysis they show that the Economics profession gradually evolved into a small world. Small worlds (or small world networks) have unique information transmission capabilities. The trend is explained by the emergence of frequently publishing researchers with many distinct co-authors. In a social network they resemble stars. The original results are robust to the usage of (I) another software, (II) a recent version of the originally used data, and (III) another database and a more sophisticated author disambiguation.
        • Available at SSRN

        Rose, Michael; Baruffaldi, Stefano Horst (2020). Finding Doppelgängers in Scopus: How to Build Scientists Control Groups Using Sosia, Max Planck Institute for Innovation & Competition Research Paper, No. 20-20. DOI

        • The construction of control groups of scientists is often a daunting effort. This paper presents sosia, an open-source Python-based software designed to query efficiently the Scopus database via RESTful API. sosia searches for researchers with publication profiles similar to a given researcher up to a given year based on all main standard bibliometric indicators. The user can choose flexibly a set of parameters to restrict the search to more or less narrow boundaries upfront and obtain additional similarity indicators to select a subset of authors after the search. Advanced settings also allow to narrow the search to a list of affiliations and to minimize the possible errors arising from ambiguous author profiles. One basic search can be set up in a few command lines and the average time of computation goes between 60 and 300 minutes. We discuss the functioning, characteristics, limitations and possible extension of the software.

        Hottenrott, Hanna; Rose, Michael; Lawson, Cornelia (2019). The Rise of Multiple Institutional Affiliations, arXiv preprint 1912.05576.

        • The affiliation to an institution provides prestige and identity to researchers and determines access to resources and infrastructure. Institutions in turn seek to affiliate researchers to secure their knowledge and skills, benefiting the research conducted within these institutions and their position in national and international rankings. This study documents the phenomenon of researchers having multiple affiliations and discusses potential causes and consequences. We analyze affiliation information of 8.5M authors from 40 countries, who published 8.9M scientific articles in 14 disciplines since 1996. We find that multiple affiliations occur both within countries as well as across borders, and that more than 60% are within the academic research sector. The share of authors with multiple affiliations increased substantially over the past two decades and particularly since the mid-2000s. The increase is particularly pronounced in countries whose funding structures became more competitive. The rise of multiple affiliations points to fundamental changes in the organisation of science and challenges our measurements of where scientific activity takes place.
        • Also published as: Max Planck Institute for Innovation & Competition Research Paper No. 20-14

        Rose, Michael; Kitchin, John R. (2019). pybliometrics: Scriptable Bibliometrics Using a Python Interface to Scopus, Max Planck Institute for Innovation & Competition Research Paper, No. 19-03.

        • We present a wrapper for the Scopus RESTful API written for Python 3. The
          wrapper allows users to access the Scopus database via user-friendly interfaces and
          can be used without prior knowledge of RESTful APIs. The package provides
          classes to interact with different Scopus APIs to retrieve information as diverse
          as citation counts, author information or document abstracts. Files are cached
          to speed up subsequent analysis. The package addresses all users of Scopus data,
          such as researchers working in Science of Science or evaluators. It facilitates re-
          producibility of research projects and enhances data integrity for researchers using Scopus data.
        • Available at SSRN
        • Also published in SoftwareX, 10, 100263

        Georg, Co-Pierre; Rose, Michael; Opolot, Daniel (2017). Informal Intellectual Collaboration with Central Colleagues, Kiel Working Paper, 2084.

        • When preparing a research article, academics engage in informal intellectual collaboration by asking their colleagues for feedback. This collaboration gives rise to a social network between academics. We study whether informal intellectual collaboration with an academic who is more central in this social network results in a research article having higher scientific impact. To address the well-known reflection problem in estimating network effects, we use the assignment of discussants at NBER summer institutes as a quasi-natural experiment. We show that manuscripts discussed by a discussant with a 10% higher than average Bonacich centrality rank results in 1.4% more citations and a 5% higher probability that an article is published in a top journal. To illustrate our results, we develop a structural model in which a positive externality from intellectual collaboration implies that collaborating with a more central colleague results in larger scientific impact of the research article.
        • https://www.ifw-kiel.de/fileadmin/Dateiverwaltung/IfW-Publications/system/informal-intellectual-collaboration-with-central-colleagues/kwp_2084.pdf

        Presentations

        30.10.2023
        Nobelwomen: Status and Gender Balance in Science
        Copenhagen Business School Junior Seminar
        Location: Copenhagen, Danmark


        24.11.2022
        Trump, Iran and Science
        Econometric-Statistical Seminar, Kiel University
        Location: Kiel


        22.11.2022
        The Long-Term Role Model Effect of Prizes on Female Scientists
        Staff Seminar, Kiel Institute for the World Economy
        Location: Kiel


        26.09.2022
        The Long-Term Role Model Effect of Prizes on Female Scientists
        TUM Economics Research Wiesn 2022
        Location: Munich


        18.05. – 20.05.2022
        Finding Control Groups for Academics with Sosia
        Workshop “The Economics and Organisation of Science”
        Location: Heilbronn


        08.03.2022
        The Long-Term Role Model Effect of Prizes on Female Scientists
        Seminar, Universidad de Granada (UGR)
        Location: Granada, Spain


        21.06.2021
        The Long-Term Role Model Effect of Prizes to Female Scientists
        ifo Institute
        Location: Munich


        19.01.2021
        Discussants
        University of Luxembourg
        Location: Esch-sur-Alzette, Luxembourg


        29.09.2020
        Discussants
        KU Leuven, Leuven, Netherlands
        Location: online


        21.08.2020
        Discussants
        Kiel Institute for the World Economy
        Location: Kiel

        Lectures

        08/2022
        Python Programming and Machine Learning for Economists
        Institut für Weltwirtschaft Kiel (Advances Studies Programme)
        Location: Kiel


        01/2022
        Python Programming and Machine Learning for Economists
        ifo-Institut
        Location: Munich


        06/2021
        Python Programming and Machine Learning for Economists
        TU München
        Location: Munich


        17/08/2020 – 20/08/2020
        Machine Learning for Economists
        Kiel Institute for the World Economy
        Location: Kiel


        03/2018
        Big Data and Machine Learning for Python
        ifo-Institut
        Location: Munich


        04/2018
        Big Data and Machine Learning for Python
        LMU Munich
        Location: Munich


        01/2018
        Machine Learning for Python
        Georgia Institute of Technology (Scheller College of Business)
        Location: Atlanta (Georgia), US


        09/2017
        Data Acquisition for Python
        Georgia Institute of Technology, Scheller College of Business
        Location: Atlanta (Georgia), US


        04/2017 - 06/2017
        Risk Management Computing Skills
        Master's Course, University of Cape Town
        Location: Cape Town, South Africa


        03/2017
        Computational Mathematics
        Teaching Assistant, Master's Pre-course, University of Cape Town
        Location: Cape Town, South Africa


        02/2016 - 12/2016
        Quantitative Methods in Economics and Financial Econometrics
        Teaching Assistant, Master's Course, University of Cape Town
        Location: Cape Town, South Africa

        Projects