As technology-assisted decision-making is becoming more widespread, it is important to understand how the algorithmic nature of the decision-maker affects how decisions are perceived by the affected people. We use a laboratory experiment to study the preference for human or algorithmic decision makers in re-distributive decisions. In particular, we consider whether algorithmic decision maker will be preferred because of its unbiasedness. Contrary to previous findings, the majority of participants (over 60%) prefer the algorithm as a decision maker over a human—but this is not driven by concerns over biased decisions. Yet, despite this preference, the decisions made by humans are regarded more favorably. Participants judge the decisions to be equally fair, but are nonetheless less satisfied with the AI decisions. Subjective ratings of the decisions are mainly driven by own material interests and fairness ideals. For the latter, players display remarkable flexibility: they tolerate any explainable deviation between the actual decision and their ideals, but react very strongly and negatively to redistribution decisions that do not fit any fairness ideals. Our results suggest that even in the realm of moral decisions algorithmic decision-makers might be preferred, but actual performance of the algorithm plays an important role in how the decisions are rated.
Available at SSRN
Forthcoming in: Public Choice